fbpx La deriva dei radiotelescopi | Scienza in rete

La deriva dei radiotelescopi

Tempo di lettura: 3 mins

Non sono mai stati così vicini come quest’anno, Pierguido Sarti e il suo collega Wolfgang Schlüter. Entrambi geodeti, studiano la Terra usando i radiotelescopi. Pierguido lavora presso quello di Medicina dell’INAF, in provincia di Bologna. Wolfgang, invece, è di stanza all’antenna di Wettzell, in Germania, a oltre 500 chilometri di distanza. Mai così vicini, dicevamo, pur senza mai essersi alzati dalla sedia: a spostarsi, lentissima ma inesorabile, è stata la terra sotto i loro piedi. Nel 1987, le due radioantenne distavano 522 chilometri 461 metri e 12 centimetri l’una dall’altra. Oggi, millimetro più millimetro meno, quella distanza si è ridotta a 522 chilometri 461 metri e 7 centimetri. E se 5 centimetri in meno su oltre 500 chilometri possono sembrare pochi, faremmo bene a chiederci che fine abbiano fatto. Perché quei 5 centimetri di pianeta erano lì, su questo non c’è dubbio. E una drammatica conseguenza della loro apparente scomparsa ce la ritroviamo in questi giorni sotto i nostri occhi in Emilia, con la sequenza sismica iniziata lo scorso 20 maggio.

Quei 5 centimetri mancano all’appello perché la placca africana spinge verso nord, verso quella eurasiatica. Un movimento impercettibile, ma identificato e misurato da decenni con numerose tecniche. Quella alla quale fanno ricorso Pierguido Sarti e i suoi colleghi, detta VLBI (Very Long Baseline Interferometry), oltre a permettere misure di precisione estrema, essendo la più “antica” tecnica di geodesia spaziale è anche quella con la serie storica di dati omogenei più lunga utilizzata per studi a scala globale: ben 27 anni, rispetto ai 23 del satellite laser-ranging e ai 12 del GPS. Ed è una tecnica direttamente mutuata dall’astrofisica.

«Utilizziamo i segnali che vengono emessi dalle radio-sorgenti extragalattiche, in particolare le quasar. Ciò che facciamo», spiega Sarti, «è misurare il ritardo con il quale il segnale proveniente dalle quasar arriva a un’antenna rispetto all’altra. Ritardo che è collegato in maniera diretta alla distanza fra i radiotelescopi. Ripetendola nel tempo a intervalli regolari, riusciamo a capire quanto varia. In realtà, non usiamo due antenne, ma di più, anche sei o sette. E questo ci mostra come le placche tettoniche sulle quali le antenne sono situate si avvicinano o si allontanano l’una rispetto all’altra».

Guardando la mappa europea (vedi immagine in alto), in effetti, è facile notare come le frecce che indicano lo spostamento delle antenne riguardino esclusivamente le tre stazioni VLBI italiane. Gli altri radiotelescopi, situati sulla placca eurasiatica, negli ultimi decenni sono rimasti pressoché immobili l’uno rispetto all’altro. I tre diMedicina (BO), Matera e Noto (SR), al contrario, presentano spostamenti planimetrici – cioè, orizzontali – che variano dai 2.2 mm di Medicina in direzione nord-nordest fino ai 5 mm all’anno di Noto, in direzione nord-nordovest. A conferma che, dal punto di vista geodetico, quelli su cui si ergono i tre radiotelescopi italiani (ai quali presto si aggiungerà SRT, in Sardegna) sono siti strategici: con Noto che risente principalmente della placca africana, Matera quasi al confine fra placca adriatica e placca ionica, e infine quello di Medicina, incastonato fra gli Appennini e la faglia che si è riattivata in questi giorni in Pianura padana.

Ma con quale precisione vengono registrati, questi spostamenti? «Dipende dal numero di dati acquisiti. Si tratta comunque di precisioni submillimetriche, dunque meglio di un millimetro, anche su distanze di migliaia di chilometri. Si tratta però di una precisione strettamente formale, statistica, perché a causa di eventuali errori sistematici non sempre corrisponde all’accuratezza. In ogni caso, l’accuratezza che riusciamo a raggiungere è sicuramente al di sotto del centimetro. Nel corso degli anni, per quanto riguarda la distanza fra Medicina e Wettzell, abbiamo effettuato 265 misure (vedi grafico). L’ultima risale proprio al 17 maggio, dunque appena tre giorni prima dell’evento sismico. E il prossimo esperimento è in programma per il 20 giugno».

Per saperne di più, guarda l’intervista video a Pierguido Sarti:

[Video:http://www.youtube.com/watch?v=FEpVoc6irKk]

Tratto dal notiziario online dell'Istituto Nazionale di Astrofisica MediaInaf


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

La circolazione oceanica nel Nord Atlantico (AMOC) sta per spegnersi?

Atlantic Meridional overturning Circulation (AMOC)

Negli ultimi anni, varie testate hanno riportato la diminuzione dell'Atlantic Meridional Overturning Circulation (AMOC) nel Nord Atlantico, cruciale per il clima dell'emisfero Nord, avvertendo del rischio che si stia spegnendo. È quanto, in effetti,  suggeriscono alcuni studi recenti, ma c'è disaccordo tra gli esperti: la complessità e l'incertezza dei modelli climatici rendono difficile prevedere con certezza il futuro di AMOC.

Schema delle correnti di AMOC. Crediti: modificato da R. Curry, Woods Hole Oceanographic Institution/Science/USGCRP, Wikimedia Commons. Licenza: CC BY 3.0 DEED

A più riprese negli ultimi anni, testate importanti hanno pubblicato articoli che raccontano come, secondo alcune ricerche, l’intensità della circolazione termoalina nel Nord Atlantico, nota come Atlantic Meridional overturning Circulation (AMOC) sia non solo in diminuzione, ma sia proprio sull’orlo di uno spegnimento totale.