fbpx L'esito delle urne, tra fisica teorica e sorteggio | Page 5 | Scienza in rete

L'esito delle urne, tra fisica teorica e sorteggio

Read time: 2 mins

Urna: contenitore dal quale vengono estratti i numeri di una lotteria, dice dizionarioitaliano.it.
Estrarre a sorte tra i cittadini una quota dei parlamentari migliorerebbe l’efficacia del Parlamento, dicono Andrea Rapisarda e Alessandro Pluchino, fisici teorici dell’Università di Catania. Se l’urna è quella elettorale, dunque, la definizione è davvero calzante.

Nello studio pubblicato su Physica A nel 2011, ripreso a gennaio scorso da Le Scienze e da cui ora è stato tratto anche un libro - “Democrazia a sorte” (Malcor d’Edizione) - è stato simulato al computer un modello di Parlamento ideale. In questo Parlamento virtuale si è riscontrato un aumento dell’efficienza della legislatura con un certo numero – misurabile - di parlamentari sorteggiati tra i cittadini.

Qullo guidato da Rapisarda e Pluchino è un lavoro congiunto di economia, sociologia e fisica teorica (fisica dei sistemi complessi). Il modello fisico di Parlamento è efficace e fornisce una formula inedita per calcolare il numero di sorteggiati che massimizza l’efficienza. Nel Parlamento simulato ci sono i parlamentari dei due partiti e gli indipendenti, tutti rappresentati come punti su un diagramma bidimensionale – ideato dall’economista Carlo Cipolla - e le due variabili sono “interesse personale” e “interesse collettivo”. L’efficienza è definita come prodotto tra la percentuale di leggi approvate e il benessere sociale ottenuto.
Cambiando a caso le posizioni di coalizioni e indipendenti sul diagramma, si determina il numero ottimale di battitori liberi. Se ci sono solo i due partiti, il benessere ottenuto è basso perché questi favoriranno solo i loro interessi; d’altra parte, con i soli parlamentari liberi sarebbe quasi nullo il numero di leggi approvate. I due casi “estremi” non sono efficienti ed esiste sempre un compromesso ideale tra elezione ed estrazione. Le elezioni dovrebbero decretare le proporzioni tra i partiti e i seggi rimanenti andrebbero sorteggiati. Del resto, i precedenti storici non mancano, dai Greci alla Venezia del Doge.

«Non è una provocazione – spiega il prof. Andrea Rapisarda – ma un modello scientifico con molti vantaggi: semplicità, partecipazione e capacità di limitare il potere dei soliti noti ».

Autori: 
Sezioni: 
Indice: 
Elezioni

prossimo articolo

Perché le reti neurali hanno vinto i Nobel per la fisica e la chimica?

Quest'anno l'Intelligenza Artificiale ha fatto la parte del leone nei Nobel per la fisica e la chimica. Meglio sarebbe dire machine learning e reti neurali, grazie al cui sviluppo si devono sistemi che vanno dal riconoscimento di immagini alla IA generativa come Chat-GPT. In questo articolo Chiara Sabelli racconta la storia della ricerca che ha portato il fisico e biologo John J. Hopfield e l'informatico e neuroscienzato Geoffrey Hinton a porre le basi dell'attuale machine learning.

Immagine modificata a partire dall'articolo "Biohybrid and Bioinspired Magnetic Microswimmers" https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.201704374

Il premio Nobel per la fisica 2024 è stato assegnato a John J. Hopfield, fisico e biologo statunitense dell’università di Princeton, e a Geoffrey Hinton, informatico e neuroscienziato britannico dell’Università di Toronto per aver sfruttato strumenti della fisica statistica nello sviluppo dei metodi alla base delle potenti tecnologie di machine learning di oggi.