fbpx AURIGA, il record che avvicina alla nuova fisica | Scienza in rete

AURIGA, il record che avvicina alla nuova fisica

Primary tabs

Tempo di lettura: 3 mins

La relatività generale e la meccanica quantistica sono le due teorie che hanno rivoluzionato la fisica nel secolo scorso. Ambedue hanno avuto importanti conferme sperimentali ed hanno successivamente consentito un notevole progresso tecnologico di cui godiamo i benefici. Partono però da punti di vista spesso agli antipodi, e in genere esplorano aspetti diversi della realtà: la relatività generale dà una descrizione nuova della gravità e predilige quindi il cosmo, la meccanica quantistica ha origine dall’analisi dei fenomeni microscopici ed ha come elemento chiave la descrizione del processo di misura (inteso in generale come insieme di interazioni che consentono di acquisire informazioni su un sistema fisico). Le situazioni in cui le due visioni devono incontrarsi sono quelle più estreme, che si trovavano all’inizio dell’universo e che ora si potrebbero cercare nei pressi dei buchi neri. Si tratta di condizioni non realizzabili in laboratorio, e il cammino della fisica è difficile quando è carente il riscontro sperimentale e quindi la possibilità di verificare (ed eventualmente falsificare) le previsioni. Tutte le strade percorse indicano comunque che, sotto il regno comune delle due grandi teorie, lo spazio (o per lo meno ciò che riusciamo a misurare dello spazio) ha un aspetto molto diverso da quello cui siamo abituati, ed assume probabilmente una forma ‘granulare’ anziché omogenea. La scala a cui questo avviene è estremamente piccola: l’unità di misura ‘naturale’ in questo campo è la cosiddetta ‘lunghezza di Planck’ che vale ‘solo’ 10-35. Per fare un paragone, il nucleo di un atomo occupa 10-15 metri. Tuttavia, deviazioni dal comportamento ‘normale’ potrebbero aver luogo anche sulla scala di parecchie  ‘lunghezze di Planck’.  La sfida sperimentale è quindi avvicinarsi sempre più a questa lunghezza critica, e ad ogni passo c’è la possibilità di scoprire nuova fisica.

Un contributo a questo percorso è venuto dal gruppo di fisici italiani che lavorano all’esperimento AURIGA, che si trova nei laboratori dell’INFN a Legnaro. Il cuore di AURIGA è una barra di alluminio lunga 3 metri e pesante 2 tonnellate, retta da un complesso sistema di sospensioni che isolano dal rumore esterno, il tutto sotto vuoto spinto e alla temperatura di 4 gradi sopra lo zero assoluto. Lo scopo per cui è stata costruita è rivelare l’arrivo di onde gravitazionali, ovvero perturbazioni dello spazio-tempo previste dalla relatività generale ma  estremamente deboli, che ancora sfuggono ad una rivelazione diretta. L’isolamento e la bassa temperatura (quindi la ridotta agitazione termica) permettono alla barra di rimanere particolarmente quieta. La vibrazione della barra (che ‘suona’ come un diapason a 1 kHz) è stato ulteriormente ‘congelata’ sfruttando una tecnica recente basata su amplificatori a superconduttore. La temperatura raggiunta è di solo 1 millesimo di grado sopra lo zero assoluto. La barra di AURIGA è così diventata il sistema fisico ‘meglio localizzato’ che si sia mai realizzato: la sua vibrazione rimane confinata in meno di 10-18 metri. L’assenza di anomalie (anzi, la possibilità stessa di misurare un livello così basso di movimento) diventa un dato significativo. In questo modo viene infatti messo un limite superiore alla scala a cui possono avvenire fenomeni generati dalla combinazione di effetti di fisica quantistica e gravitazione. Il risultato di AURIGA progredisce (è un nuovo record) rispetto ai limiti precedenti e soprattutto lo fa con un approccio nuovo che stimola lo sviluppo teorico in direzioni utili per un efficace confronto con gli esperimenti.

Siamo ancora lontani dalla lunghezza di Planck, ma ogni avanzamento potrebbe riservare sorprese. L’INFN ha iniziato una nuova linea di ricerca (chiamata con la sigla HUMOR) per continuare l’esplorazione verso limiti più spinti, sempre basandosi su esperimenti che cercano di esplorare la fisica alla ‘scala di Planck’ con misure raffinate senza ricreare le condizioni estreme di un buco nero. 


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Siamo troppi o troppo pochi? Dalla sovrappopolazione all'Age of Depopulation

persone che attraversano la strada

Rivoluzione verde e miglioramenti nella gestione delle risorse hanno indebolito i timori legati alla sovrappopolazione che si erano diffusi a partire dagli anni '60. Oggi, il problema è opposto e siamo forse entrati nell’“Age of Depopulation,” un nuovo contesto solleva domande sull’impatto ambientale: un numero minore di persone potrebbe ridurre le risorse disponibili per la conservazione della natura e la gestione degli ecosistemi.

Nel 1962, John Calhoun, un giovane biologo statunitense, pubblicò su Scientific American un articolo concernente un suo esperimento. Calhoun aveva constatato che i topi immessi all’interno di un ampio granaio si riproducevano rapidamente ma, giunti a un certo punto, la popolazione si stabilizzava: i topi più anziani morivano perché era loro precluso dai più giovani l’accesso al cibo, mentre la maggior parte dei nuovi nati erano eliminati.