Trattare la qualità dell’aria negli ambienti interni con lo stesso rigore con cui si garantiscono acqua pulita e alimenti sicuri. Questo il cambio di paradigma invocato da un gruppo di 39 scienziati in un articolo pubblicato oggi sulla rivista Science.
Nel nuovo paradigma, l’attenzione verso i patogeni trasmessi per via aerea deve essere centrale. Infatti, se finora la qualità dell’aria in ambienti interni è stata controllata solo per limitare i rischi derivanti dall’esposizione a composti chimici nocivi e garantire comfort termico e olfattivo, poco o nulla è stato fatto per limitare la trasmissione di microorganismi attraverso l’aerosol impiegando opportuni sistemi di ventilazione.
«Non esistono norme o linee guida per la ventilazione degli ambienti interni che tengano conto di questi rischi, fatta eccezione per le strutture sanitarie», commenta Giorgio Buonanno, professore ordinario all’Università di Cassino e del Lazio Meridionale e uno dei firmatari dell’articolo su Science.
L’appello arriva in un momento particolarmente significativo della pandemia, anche se poco promosso dai media. Venerdì scorso, infatti, i Centers for Disease Control and Prevention statunitensi hanno aggiornato la sezione del loro sito che spiega come si diffonde Covid-19, mettendo in cima alla lista l’inalazione di aria in prossimità di una persona infetta che emette piccole goccioline e particelle (un’espressione colloquiale per riferirsi all’aerosol) contenenti il SARS-CoV-2 e solo al secondo posto la deposizione di goccioline e particelle più grossolane (i droplet) sulle mucose di bocca, naso e occhi.
Con aerosol si fa riferimento alle particelle che hanno diametro variabile tra frazioni di micrometro e cento micrometri emesse dall’apparato respiratorio nell’atto di respirare, parlare, tossire o starnutire e capaci di rimanere sospese in aria per ore e viaggiare su lunghe distanze trasportate dalle correnti. I droplet hanno dimensioni maggiori, da 100 a 1000 micrometri, non galleggiano in aria ma, seguendo traiettorie balistiche, cadono a terra a distanze di 1-2 metri dal punto di emissione (nel parlare raggiungono distanze non superiori ai 50 centimetri).
L’aggiornamento dei CDC arriva a una settimana da quello dell’Organizzazione Mondiale della Sanità, che il 30 aprile ha modificato la sua sezione “Domande e risposte” su come Covid-19 si diffonde tra le persone. L’OMS ha aggiunto infatti un secondo modo di trasmissione, chiamato long-range, che si verifica in ambienti chiusi poco ventilati dove le persone tendono a trascorrere lunghi periodi di tempo. Fino al 30 aprile l’unico modo di trasmissione elencato era quello cosiddetto close-range, cioè entro il metro di distanza.
«La posizione dell’OMS era stata fortemente incoerente fino al 30 aprile», commenta Buonanno e spiega «se da una parte non includeva il ruolo degli aerosol nella trasmissione del contagio, dall’altro suggeriva di ventilare gli ambienti chiusi. Se il virus si trasmettesse davvero solo attraverso i droplet, questa raccomandazione sarebbe del tutto inutile». Solo il primo marzo di quest’anno l’OMS ha pubblicato una roadmap per migliorare la ventilazione degli ambienti interni per mitigare il rischio di diffusione di Covid-19.
L’Istituto Superiore di Sanità a oggi indica ancora come vie di trasmissione del virus solo droplet e superfici (il cui ruolo è stato incredibilmente ridimensionato) pur raccomandando, seppure senza troppo convinzione, l'aerazione e ventilazione degli ambienti chiusi per diminuire le infezioni.
Il riconoscimento del ruolo della trasmissione attraverso aerosol arriva dopo una serie di pressioni di una parte della comunità scientifica. Già a luglio del 2020, 239 scienziati si erano rivolti all’OMS con una lettera aperta, coordinata da Lidia Morawska, esperta di fisica degli aerosol della Queensland University of Technology in Australia e prima firmataria anche del nuovo articolo su Science, in cui chiedevano di riconoscere l’importanza dell’aerosol nell’epidemia di SARS-CoV-2 e di adeguare di conseguenza le raccomandazioni per mitigare il contagio, soprattutto negli spazi chiusi, poco ventilati e affollati. In particolare, chiedevano di rendere obbligatorie le mascherine anche nel caso in cui la distanza interpersonale fosse rispettata e per tutti gli operatori sanitari coinvolti nella cura di pazienti contagiati (fino a quel momento le mascherine più filtranti, le FFP2, venivano raccomandate solo durante manovre specifiche, come l’intubazione dei pazienti).
Ma perché le autorità sanitarie hanno impiegato così tanto tempo? «L’idea che la principale via di trasmissione di numerose malattie infettive fossero i droplet risale alla fine dell’Ottocento, proposta per la prima volta da Carl Flügge e poi ripresa dall’influente Charles Chapin nel suo libro del 1910 “The Sources and Modes of Transmission”», commenta Buonanno e aggiunge «nel 1930 William Wells mostrò che particelle più piccole dei droplet avevano un ruolo fondamentale nella trasmissione di alcuni virus, tra cui la tubercolosi, ma la sua teoria incontrò la resistenza della comunità medica».
Questa resistenza è probabilmente dovuta al fatto che la teoria di Flügge sui droplet avesse finalmente messo in discussione quella dei miasmi secondo cui, per esempio, l’epidemia di colera nella Londra di metà ottocento fosse stata causata dall’aria insalubre della città e non da una pompa d’acqua contaminata come poi venne dimostrato dall’epidemiologo John Snow. L’attenzione verso la depurazione e il controllo dell’acqua nacque proprio dalla scoperta di Snow che favorì l’accettazione del “Report on the Sanitary Conditions of the Labouring Population” pubblicato da Edwin Chadwick nel 1842.
Buonanno e Marowska, insieme a Luca Stabile, professore associato al dipartimento di ingegneria dell’Università di Cassino e del Lazio Meridionale, hanno firmato un lavoro sulla rivista Environment International ad agosto 2020 in cui, usando modelli di emissione della carica virale e di fluidodinamica, hanno mostrato che l’aerosol è la principale via di trasmissione di SARS-CoV-2.
I modelli sono stati usati per ricostruire retrospettivamente la dinamica di due eventi di contagio ben documentati, in un ristorante di Guangzhou in Cina e durante le prove di un coro a Mount Vernon nello stato americano di Washington, entrambi avvenuti in ambienti chiusi e scarsamente ventilati in cui le persone hanno sì mantenuto la distanza, ma senza indossare mascherine.
«L’importanza degli eventi di superdiffusione in questa epidemia è un segnale evidente del ruolo degli aerosol nella trasmissione di SARS-CoV-2», spiega Buonanno e continua «i droplet sono rilevanti a 1-2 metri di distanza, dunque se una singola persona infetta è in grado di contagiarne decine di altre pur rispettando le distanze (come avvenuto nel caso del coro a Mount Vernon, ndr), deve essere l’aerosol la via dominante. Più che la presenza di superdiffusori, ovvero persone capaci di infettarne molte altre per via di cariche virali straordinariamente elevate, esistono “condizioni di superdiffusione” legate a volumetria dell’ambiente chiuso, tempi di esposizione, carica virale del soggetto infetto, attività metabolica e respiratoria e condizioni di ventilazione».
L’aerosol potrebbe essere dominante anche nei contagi avvenuti per contatti entro il metro di distanza, come dimostrato in diversi studi. Infatti, la capacità infettante è inversamente proporzionale alla dimensione della particella che contiene il virus a causa del tratto dell’apparato respiratorio dove viene prodotta dal soggetto infetto e di quello su cui si deposita nella persona suscettibile. Occorre sempre ricordare che, al di là del modo di trasmissione, droplet o aerosol, una variabile cruciale è la durata temporale del contatto.
Il ruolo dell’aerosol è stato riconosciuto per molte altre malattie infettive, come l’influenza o il SARS-CoV, il coronavirus responsabile dell’epidemia di SARS del 2003. «In quel caso venne riconosciuto quando l’epidemia era già stata contenuta. Addirittura venne documentato un caso di contagio tra gli abitanti di condomini diversi attraverso evaporazione dalla colonna fecale», racconta Buonanno. Per tubercolosi e morbillo, il ruolo dell’aerosol è stato accettato più facilmente, perché era davvero difficile spiegare la loro elevata contagiosità solamente con i droplet.
Il riconoscimento di CDC e OMS non è solo una questione formale. Non averlo fatto prima ha impedito che le campagne di comunicazione di massa includessero la raccomandazione forse più importante di tutte: stare il più possibile all’aperto, come osserva sulle colonne del New York Times Zeynep Tufekci, sociologa alla University of North Carolina, Chapel Hill. Non sono infatti documentati eventi di superdiffusione avvenuti all’aperto e diversi studi hanno mostrato che l’80% dei contagi è dovuto al 5% degli infetti.
«C’è anche un elemento di natura culturale che contribuisce a spiegare questa inerzia da parte delle autorità sanitarie e della comunità medica in generale», commenta Livio Mazzarella, professore ordinario al Politecnico di Milano e uno degli autori del nuovo articolo su Science, «i medici faticano ad accettare conclusioni che non derivino da modelli statistici, del tipo impiegato negli studi clinici, ma piuttosto adottino l’approccio descrittivo e meccanicistico degli ingegneri verso i problemi legati alla diffusione dei patogeni nell’aria e quindi agli studi sulla qualità dell’aria e la ventilazione degli edifici», aggiunge.
Come abbiamo anticipato, gli standard esistenti per la qualità dell’aria negli ambienti interni sono finalizzati a garantire il benessere termico e olfattivo degli occupanti e a limitare l’esposizione a composti chimici come benzene, monossido di carbonio, formaldeide. Il primo obiettivo è formulato in termini di numero di ricambi d’aria necessario ogni ora, mentre per il secondo si ragiona in termini di soglie di esposizione, determinate anche dai tempi medi di permanenza negli ambienti.
Formulare delle linee guida che tengano conto del rischio di infezione da patogeni trasmessi per via aerea, richiede un cambio di mentalità rispetto a quello dei valori assoluti. Si deve infatti ragionare in termini di rischio di contagio che tenga conto di diversi parametri, come per esempio il tasso di emissione virale e la sua dipendenza dalle caratteristiche dell’individuo infetto e dallo stadio di evoluzione dell’infezione, oppure l’importanza dei diversi modi di trasmissione. Per alcune malattie c’è una buona conoscenza di questi parametri, ma per altre è molto più limitata. È cruciale, dunque, che la ricerchi avanzi in queste aree.
Secondo elemento fondamentale nella progettazione di sistemi di ventilazione efficaci contro i patogeni airborne è la flessibilità. La quantità di aria esterna immessa dovrà dipendere dal numero di occupanti e dalle attività che questi svolgono. Per esempio, in una palestra dovranno essere garantiti tassi di ventilazione più elevati che in un cinema perché, se è presente un infetto, il livello di respirazione e quindi di emissione virale è maggiore durante l’attività fisica.
|