fbpx Planck verso l'origine della materia | Scienza in rete

Planck verso l'origine della materia

Tempo di lettura: 4 mins

Gli astronomi hanno una fantastica prerogativa. Sono gli unici in grado di “fotografare” il passato. Non il passato morto – quello lo sanno fare in molti; per esempio gli archeologi. No, gli astronomi fotografano il passato “in diretta”, nel momento in cui accade. Lo fanno grazie alla capacità degli strumenti di cui dispongono di vedere oggetti lontanissimi, così lontani che la loro luce, che arriva ora sulla Terra, è stata emessa milioni o addirittura miliardi di anni fa. Recentemente l’Istituto Nazionale di Astrofisica, utilizzando il Telescopio Nazionale Galileo istallato nell’arcipelago delle Canarie, ha battuto ogni record mondiale in materia, fotografando l’esplosione di una stella – mentre avveniva – circa 13 miliardi di anni fa!

sonda planck
Planck separation; ESA (image by AOES Medialab)

Con Planck, un gioiello della tecnologia moderna a cui la comunità scientifica e l’industria italiana hanno dato un contributo fondamentale, e che il vettore europeo Ariane 5 ha lanciato giovedì 14 maggio 2009 nello spazio e che andrà a posizionarsi a un milione e mezzo di chilometri dalla Terra, andremo oltre e fotograferemo l’Universo in una epoca ancora precedente, prima che si formassero le prime stelle e le prime galassie!

Planck studierà infatti la radiazione cosmica di fondo, quella radiazione emessa circa 400.000 anni dopo il Big Bang (secondo le stime correnti avvenuto circa 13,7 miliardi di anni fa), nelle prime fasi della formazione di un Universo, allora caldissimo, e che si è poi andato raffreddando per effetto della sua espansione. Radiazione che a noi perviene, proprio per effetto di questo raffreddamento legato all’espansione, come debole emissione nella banda delle micro-onde, onde radio di piccola lunghezza d’onda, comprese tra circa un centimetro e mezzo millimetro (questo è l’intervallo di sensibilità degli strumenti a bordo di Planck).

Lo studio di questa radiazione ci permetterà di capire come si è formato l’Universo, cosa è successo in quella inimmaginabile piccolissima frazione di secondo immediatamente successiva al Grande Botto. Sappiamo già molto sulla formazione ed evoluzione dell’Universo grazie a studi precedenti della radiazione di fondo, quelli condotti con i satelliti COBE (Cosmic Background Explorer), WMAP (Wilkinson Microwave Anisotropy Probe) e con l’esperimento italiano BOOMERanG (Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics) volato su un pallone stratosferico. Planck farà di meglio. Otterrà immagini ancora più nitide di quelle ottenute sino ad ora e misurerà le microscopiche variazioni di temperatura nella radiazione di fondo con una precisione di qualche milionesimo di grado, precisione mai raggiunta prima. Ed è proprio grazie allo studio dell’ampiezza e della distribuzione spaziale di queste microscopiche variazioni di temperatura e allo studio dell’eventuale polarizzazione della radiazione di fondo che acquisiremo informazioni importantissime per comprendere come si espande l’universo nonché il passato (inflazione cosmica) e il futuro (energia oscura) della sua espansione. Otterremo anche informazioni utili a svelare il mistero della materia oscura e a capire i processi che hanno portato alla formazione delle grandi strutture di materia (galassie e ammassi di galassie) che osserviamo oggi nell’Universo.

Per questo, Planck, la prima missione europea per lo studio della radiazione cosmica di fondo, è talmente importante che l’Agenzia Spaziale Europea, l’ESA, ha recentemente chiesto al suo comitato di consulenza scientifica, l’Astronomy Working Group (e l’ha chiesto ancor prima che gli strumenti iniziassero a lavorare), se si dovesse considerare un’estensione di un anno della vita del telescopio (che è stata inizialmente stabilita in 15 mesi in modo da consentire, dopo le verifiche e calibrazioni iniziali, una doppia scansione di tutto il cielo).
Certamente! è stata la risposta dell’Astronomy Working Group. Se Plank funzionerà come previsto sarà più che opportuno estendere la sua vita operativa, così da accumulare una maggior quantità di dati. È un riconoscimento dell’importanza del contributo che questo nuovo osservatorio spaziale può dare tanto alla cosmologia quanto alla fisica fondamentale.

Link utili
http://www.satellite-planck.it un sito sul contributo italiano a Planck
Immagini di Planck dal sito dell'ESA
Gruppo "planck fan" su Facebook

HideArticoli correlati

Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Terre rare: l’oro di Pechino che tutti vogliono

miniera californiana di Mountain Pass

Il trattato USA-Ucraina appena sancito rivela quanto urgente sia la necessità di dotarsi di minerali critici, fra cui le 17 terre rare, per la transizione digitale ed elettrica. In realtà tutti sono all'inseguimento della Cina, che produce il 70% di questi metalli e l'85% degli impianti di raffinazione e purificazione. Questo spiega una serie di ordini esecutivi di Trump e le nuove politiche di Giappone, Australia ed Europa, e forse anche la guerra in Ucraina. Non più tanto le fonti fossili quanto le terre rare sono diventate materia di sicurezza nazionale. Ovunque si riaprono miniere, anche in Italia. Ma essendo difficili da estrarre e purificare si punta anche al riciclo e alla ricerca per mettere a punto le tecnologie di recupero più economiche e sostenibili. Ma come ha fatto la Cina ad acquisire una tale supremazia? E che cosa stanno facendo gli altri?

Nell'immagine la storica miniera californiana di Mountain Pass, TMY350/WIKIMEDIA COMMONS (CC BY-SA 4.0)

C’era una volta, negli anni Novanta del secolo scorso, un mondo con due potenze in sostanziale equilibrio nella produzione di terre rare: Stati Uniti (33%) e Cina (38%), seguiti da Australia (12%), India a e Malesia per il 5% ciascuna e le briciole ad altri paesi. Ora non è più così.