fbpx Taxi 1729, direzione buchi neri | Page 12 | Scienza in rete

Taxi 1729, direzione buchi neri

Read time: 2 mins

“Volevo fare qualcosa di speciale per celebrare il suo anniversario”, dice Ken Ono, matematico della Emory University di Atlanta, “è davvero affascinante per me esplorare i suoi scritti e provare a immaginare come il suo cervello possa aver funzionato, è come essere un antropologo della matematica”. Il riferimento è ai suoi recenti studi nell’ambito della teoria dei numeri, svolti nell’intenzione di onorare il 125mo anniversario della nascita, il 22 dicembre scorso, di uno dei più grandi matematici di tutti i tempi, al pari di Gauss o di Eulero: Srinivasa Ramanujan (1887-1920), lo straordinario autodidatta indiano “che stupì Cambridge”, solito riempire di formule quaderni e lavagne, tralasciando incurante la necessità di dimostrarle. Lui le “vedeva” le formule, non aveva bisogno di conferme. Lui famoso per aver visto nel numero 1729 del taxi con cui l’amico e matematico illustre Hardy era giunto in ospedale a trovarlo, definito da quest’ultimo “alquanto stupido”, il più piccolo numero esprimibile come somma di due cubi in due modi diversi.

Il lavoro di Ono, come lui stesso racconta nel Notices of the AMS di gennaio 2013, fornisce oggi a posteriori la dimostrazione rigorosa di una delle brillanti intuizioni di Ramanujan. Si tratta di funzioni matematiche speciali, dette mock theta functions, il cui uso è noto in letteratura per il calcolo dell’entropia dei buchi neri. E’ inconcepibile che abbia avuto un’intuizione simile, senza fare calcoli, con gli strumenti matematici dell’epoca. Eppure deve averla avuta”. Così ha detto Ono in occasione della Ramanujan 125 Conference, tenutasi nel novembre scorso presso l’Università della Florida. "Abbiamo dimostrato che Ramanujan aveva ragione", conclude Ono, "abbiamo sviluppato un teorema secondo cui il metodo bizzarro usato per costruire i suoi esempi è corretto". Quale miglior modo dunque per rendergli degno omaggio? Le formule belle e incomprensibili degli ultimi suoi scritti datati 1920 sfidano e commuovono ancora oggi la comunità matematica mondiale.

Autori: 
Sezioni: 
Matematica

prossimo articolo

I ratti al volante e l'importanza dell'attesa

i ratti che "guidano"

Un esperimento condotto dall'Università di Richmond ha dimostrato che i ratti, inseriti in ambienti stimolanti, sono in grado d’imparare a “guidare” non solo per ottenere una ricompensa, ma anche per il piacere dell'attività stessa. Mentre un progetto successivo ha mostrato come l'anticipazione di eventi positivi, come guidare o esplorare, abbia effetti significativi sul miglioramento dell'umore e sulle capacità cognitive.

Crediti immagine: Kelly Lambert/The Conversation. Licenza: CC BY-ND 4.0

Quando si prende in mano il guinzaglio, e a volte basta anche solo levarsi le ciabatte e mettersi le scarpe, il cane di casa comincia ad agitarsi, scodinzolare, saltellare ed esibire tutto il repertorio che indica che sa che si sta per uscire e andare in passeggiata. Gioia, eccitazione, aspettativa: è la norma. Ma se la stessa cosa la fanno dei ratti quando si apre la porta del laboratorio, sorge spontanea qualche domanda .